NAG Toolbox for MATLAB

f08te

1 Purpose

f08te reduces a real symmetric-definite generalized eigenproblem $Az = \lambda Bz$, $ABz = \lambda z$ or $BAz = \lambda z$ to the standard form $Cy = \lambda y$, where A is a real symmetric matrix and B has been factorized by f07gd, using packed storage.

2 Syntax

3 Description

To reduce the real symmetric-definite generalized eigenproblem $Az = \lambda Bz$, $ABz = \lambda z$ or $BAz = \lambda z$ to the standard form $Cy = \lambda y$ using packed storage, f08te must be preceded by a call to f07gd which computes the Cholesky factorization of B; B must be positive-definite.

The different problem types are specified by the parameter **itype**, as indicated in the table below. The table shows how C is computed by the function, and also how the eigenvectors z of the original problem can be recovered from the eigenvectors of the standard form.

itype	Problem	uplo	В	С	Z
1	$Az = \lambda Bz$	'U' 'L'	$U^{\mathrm{T}}U$ LL^{T}	$U^{-\mathrm{T}}AU^{-1}$ $L^{-1}AL^{-\mathrm{T}}$	$U^{-1}y$ $L^{-T}y$
2	$ABz = \lambda z$	'U' 'L'	$U^{\mathrm{T}}U$ LL^{T}	$UAU^{\mathrm{T}} \ L^{\mathrm{T}}AL$	$U^{-1}y$ $L^{-T}y$
3	$BAz = \lambda z$	'U' 'L'	$U^{\mathrm{T}}U$ LL^{T}	$UAU^{\mathrm{T}} \ L^{\mathrm{T}}AL$	$U^{\mathrm{T}}y$ Ly

4 References

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: itype – int32 scalar

Indicates how the standard form is computed.

$$\begin{aligned} \mathbf{itype} &= 1 \\ &\quad \text{if } \mathbf{uplo} = \text{'U'}, \ C = U^{-\mathrm{T}} A U^{-1}; \\ &\quad \text{if } \mathbf{uplo} = \text{'L'}, \ C = L^{-1} A L^{-\mathrm{T}}. \end{aligned}$$

[NP3663/21] f08te.1

f08te NAG Toolbox Manual

itype = 2 or 3
if uplo = 'U',
$$C = UAU^{T}$$
;
if uplo = 'L', $C = L^{T}AL$.
Constraint: itype = 1, 2 or 3.

2: **uplo – string**

Indicates whether the upper or lower triangular part of A is stored and how B has been factorized.

$$uplo = 'U'$$

The upper triangular part of A is stored and $B = U^{T}U$.

$$uplo = 'L'$$

The lower triangular part of A is stored and $B = LL^{T}$.

Constraint: uplo = 'U' or 'L'.

3: n - int32 scalar

n, the order of the matrices A and B.

Constraint: $\mathbf{n} \geq 0$.

4: ap(*) – double array

Note: the dimension of the array **ap** must be at least $\max(1, \mathbf{n} \times (\mathbf{n} + 1)/2)$.

The n by n symmetric matrix A, packed by columns.

More precisely,

if **uplo** = 'U', the upper triangle of A must be stored with element A_{ij} in $\mathbf{ap}(i+j(j-1)/2)$ for $i \le j$;

if **uplo** = 'L', the lower triangle of A must be stored with element A_{ij} in $\mathbf{ap}(i+(2n-j)(j-1)/2)$ for $i \ge j$.

5: bp(*) - double array

Note: the dimension of the array **bp** must be at least $\max(1, \mathbf{n} \times (\mathbf{n} + 1)/2)$.

The Cholesky factor of B as specified by **uplo** and returned by f07gd.

5.2 Optional Input Parameters

None.

5.3 Input Parameters Omitted from the MATLAB Interface

None.

5.4 Output Parameters

1: ap(*) - double array

Note: the dimension of the array **ap** must be at least $\max(1, \mathbf{n} \times (\mathbf{n} + 1)/2)$.

The upper or lower triangle of ap contains the corresponding upper or lower triangle of C as specified by **itype** and **uplo**, using the same packed storage format as described above.

2: info - int32 scalar

info = 0 unless the function detects an error (see Section 6).

f08te.2 [NP3663/21]

6 Error Indicators and Warnings

Errors or warnings detected by the function:

```
info = -i

If info = -i parameter i had an illegal value on entry. The parameters
```

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows: 1: itype, 2: uplo, 3: n, 4: ap, 5: bp, 6: info.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B^{-1} if (**itype** = 1) or B (if **itype** = 2 or 3). When f08te is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion. See the document for f08sa for further details.

8 Further Comments

The total number of floating-point operations is approximately n^3 .

The complex analogue of this function is f08ts.

9 Example

```
itype = int32(1);
uplo = 'L';
n = int32(4);
ap = [0.24;
     0.39;
     0.42;
     -0.16;
     -0.11;
     0.79;
     0.63;
     -0.25;
     0.48;
     -0.03];
bp = [2.039607805437114;
     -1.529705854077835;
     0.2745625891934577;
     -0.04902903378454601;
     1.640121946685673;
     -0.2499814119483738;
     0.6188564222624378;
     0.7887488055748053;
     0.6442661302310234;
     0.61606333757807];
[apOut, info] = f08te(itype, uplo, n, ap, bp)
apOut =
    0.0577
    0.1704
    0.2950
   -0.6024
    0.2268
    0.8667
   -0.6159
   -0.0500
    0.3972
   -1.6875
info =
           0
```

[NP3663/21] f08te.3

f08te NAG Toolbox Manual

f08te.4 (last) [NP3663/21]